|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 5, 12 и 13. а) В треугольнике ABC проведены биссектрисы внешних углов AA1, BB1 и CC1 (точки A1, B1 и C1 лежат на прямых BC, CA и AB). Докажите, что точки A1, B1 и C1 лежат на одной прямой. б) В треугольнике ABC проведены биссектрисы AA1 и BB1 и биссектриса внешнего угла CC1. Докажите, что точки A1, B1 и C1 лежат на одной прямой. На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом. В турнире участвовали шесть шахматистов. Каждые два участника турнира сыграли между собой по одной партии. Сколько всего было сыграно партий? Сколько партий сыграл каждый участник? Сколько очков набрали шахматисты все вместе? В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.
Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно? |
Страница: 1 2 3 >> [Всего задач: 11]
Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?
Страница: 1 2 3 >> [Всего задач: 11] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|