Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

а) Пусть точки A, B, C, D, E и F лежат на одной конике. Докажите, что тогда прямые Паскаля шестиугольников ABCDEF, ADEBCF и ADCFEB пересекаются в одной точке (Штейнер).
б) Пусть точки A, B, C, D, E и F лежат на одной окружности. Докажите, что тогда прямые Паскаля шестиугольников ABFDCE, AEFBDC и ABDFEC пересекаются в одной точке (Киркман).

Вниз   Решение


Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.

ВверхВниз   Решение


Внутри выпуклого четырехугольника ABCD построены равнобедренные прямоугольные треугольники ABO1, BCO2, CDO3 и DAO4. Докажите, что если O1 = O3, то O2 = O4.

ВверхВниз   Решение


Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.

ВверхВниз   Решение


Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.

ВверхВниз   Решение


Плоскость раскрашена в семь цветов. Обязательно ли найдутся две точки одного цвета, расстояние между которыми равно 1?

ВверхВниз   Решение


Докажите, что для любого n существует окружность, внутри которой лежит ровно n целочисленных точек.

ВверхВниз   Решение


Докажите, что площадь выпуклого четырехугольника равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними.

ВверхВниз   Решение


На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2. Докажите, что если окружности, описанные около треугольников A1B1C1, A1B2C2, A2B1C2, A2B2C1, проходят через одну точку, то и окружности, описанные около треугольников A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через одну точку.

ВверхВниз   Решение


Пусть стороны самопересекающихся четырехугольников KLMN и K'L'M'N', вписанных в одну и ту же окружность, пересекают хорду AB этой окружности в точках P, Q, R, S и P', Q', R', S' соответственно (сторона KL — в точке P, LM — в точке Q, и т. д.). Докажите, что если три из точек P, Q, R, S совпадают с соответственными тремя из точек P', Q', R', S', то и оставшиеся две точки тоже совпадают. (Предполагается, что хорда AB не проходит через вершины четырехугольников.)

ВверхВниз   Решение


Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.

ВверхВниз   Решение


Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности.

ВверхВниз   Решение


Постройте рациональную параметризацию окружности x2 + y2 = 1, проведя прямые через точку (1, 0).

ВверхВниз   Решение


Докажите, что если (ABCX) = (ABCY), то X = Y (все точки попарно различны, кроме, быть может, точек X и Y, и лежат на одной прямой).

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 58409

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что существует проективное отображение, которое три данные точки одной прямой переводит в три данные точки другой прямой.


Прислать комментарий     Решение

Задача 58410

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.
Прислать комментарий     Решение


Задача 58411

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что если (ABCX) = (ABCY), то X = Y (все точки попарно различны, кроме, быть может, точек X и Y, и лежат на одной прямой).
Прислать комментарий     Решение


Задача 58412

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что проективное преобразование прямой однозначно определяется образами трех произвольных точек.
Прислать комментарий     Решение


Задача 58413

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что нетождественное проективное преобразование прямой имеет не более двух неподвижных точек.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .