Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.

Вниз   Решение


Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

ВверхВниз   Решение


Докажите, что любое иррациональное число α допускает представление  α = [a0; a1, ..., an–1, αn],  где a0 – целое, a1, a2, ..., an–1 – натуральные,  αn > 1  – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь.

ВверхВниз   Решение


Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC.

ВверхВниз   Решение


Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



Задача 60385  (#02.051)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 8

У Нины 7 разных шоколадных конфет, у Коли 9 разных карамелек. Сколькими способами они могут обменяться друг с другом пятью конфетами?

Прислать комментарий     Решение

Задача 60388  (#02.054)

 [Бином Ньютона]
Тема:   [ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 8,9,10,11

Докажите справедливость формулы  

Прислать комментарий     Решение

Задача 60389  (#02.055)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Рациональные и иррациональные числа ]
Сложность: 3
Классы: 9,10,11

Сколько рациональных слагаемых содержится в разложении

а) ( + )100;

б) ( + )300?

Прислать комментарий     Решение

Задача 60390  (#02.056)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Итерации ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для любого натурального a найдётся такое натуральное n, что все числа  n + 1,  nn + 1,  nnn + 1,  ...  делятся на a.

Прислать комментарий     Решение

Задача 60391  (#02.057)

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
[ Правило произведения ]
[ Произвольные многоугольники ]
Сложность: 2+
Классы: 8,9

Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .