Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла ABC. По какой траектории движется середина этого отрезка?

Вниз   Решение


Автор: Фольклор

Прямоугольник разбили двумя прямыми, параллельными его сторонам, на четыре прямоугольника. Один из них оказался квадратом, а периметры прямоугольников, соседних с ним, равны 20 см и 16 см. Найдите площадь исходного прямоугольника.

ВверхВниз   Решение


Найдите m и n зная, что  

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



Задача 60419  (#02.085)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3
Классы: 9,10,11

Найдите m и n зная, что  

Прислать комментарий     Решение

Задача 60420  (#02.086)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Числовые последовательности (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 10,11

Какое слагаемое в разложении  (1 + )100  по формуле бинома Ньютона будет наибольшим?

Прислать комментарий     Решение

Задача 60421  (#02.087)

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9

Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
  а) никакая цифра не повторяется более одного раза;
  б) повторения цифр допустимы;
  в) числа должны быть нечётными и повторений цифр быть не должно?

Прислать комментарий     Решение

Задача 60422  (#02.088)

Темы:   [ Перестановки и подстановки ]
[ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 2+
Классы: 8,9

Сколько существует различных возможностей рассадить 5 юношей и 5 девушек за круглый стол с 10 креслами так, чтобы они чередовались?

Прислать комментарий     Решение

Задача 76445  (#02.089)

Темы:   [ Разные задачи на разрезания ]
[ Сочетания и размещения ]
[ Многоугольники (прочее) ]
Сложность: 4
Классы: 8,9

На сколько частей разделяют n-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке?
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .