ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Имеется две кучки камней: в первой - 7 камней, во второй - 5. За ход разрешается брать любое количество камней из одной кучки или поровну камней из обеих кучек. Проигрывает тот, кто не может сделать ход.
Существуют ли а) 5, б) 6 простых чисел, образующих арифметическую прогрессию? Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что d > 30000. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что d > 30000.
Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов.
Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.
Докажите, что при n > 2 числа 2n – 1 и 2n + 1 не могут быть простыми одновременно.
При каких целых n число n4 + 4 – составное?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке