ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз. Пусть a и n – натуральные числа, большие 1. Докажите, что если число an + 1 простое, то a чётно и n = 2k. Докажите неравенство для натуральных n > 1: Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов. Обязательно ли треугольник равнобедренный, если
центр его вписанной окружности одинаково удален от середин
двух сторон?
На концах клетчатой полоски 1 × 20 стоит по шашке. За ход разрешается сдвинуть любую шашку в направлении другой на одну или на две клетки. Перепрыгивать шашкой через шашку нельзя. Проигрывает тот, кто не может сделать ход. Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми? |
Страница: << 1 2 3 4 5 6 [Всего задач: 30]
Пусть a и n – натуральные числа, большие 1. Докажите, что если число an + 1 простое, то a чётно и n = 2k.
Пусть fn = 22n + 1. Докажите, что fn делит 2fn – 2.
Докажите, что числа Ферма fn = 22n + 1 при n > 1 не представимы в виде суммы двух простых чисел.
Пусть a и n – натуральные числа, большие 1. Докажите, что если число an – 1 простое, то a = 2 и n – простое.
Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми?
Страница: << 1 2 3 4 5 6 [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке