ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.

Вниз   Решение


Докажите, что  (5a + 3b, 13a + 8b) = (a, b).

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 173]      



Задача 60493  (#03.041)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Натуральные числа a1, a2, ..., a49 удовлетворяют равенству  a1 + a2 + ... + a49 = 540.
Какое наибольшее значение может принимать их наибольший общий делитель?

Прислать комментарий     Решение

Задача 54646  (#03.042)

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ НОД и НОК. Взаимная простота ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

Дан угол, равный 19°. Разделите его на 19 равных частей с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 60495  (#03.043)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Числа от 1 до 1000 выписаны подряд по кругу. Начиная с первого, вычёркивается каждое 15-е число: 1, 16, 31, ..., причём при повторных оборотах зачёркнутые числа считаются снова. Число оборотов не ограничено. Сколько чисел останутся незачёркнутыми?

Прислать комментарий     Решение

Задача 60496  (#03.044)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9,10

Докажите, что  (5a + 3b, 13a + 8b) = (a, b).

Прислать комментарий     Решение

Задача 60497  (#03.045)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 8,9

Может ли наибольший общий делитель двух натуральных чисел быть больше их разности?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .