Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?

Вниз   Решение


Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

ВверхВниз   Решение


Сколькими способами можно переставить буквы слова "ЭПИГРАФ" так, чтобы и гласные, и согласные шли в алфавитном порядке?

ВверхВниз   Решение


В вершинах правильных многоугольников записываются числа 1 и 2. Сколько существует таких многоугольников, что сумма чисел, стоящих в вершинах, равна n ( n $ \geqslant$ 3)? Две расстановки чисел, которые можно совместить поворотом, не отождествляются.

ВверхВниз   Решение


Докажите, что число Фибоначчи Fn совпадает с ближайшим целым числом к  ,  то есть  Fn = + .

ВверхВниз   Решение


Докажите следующий вариант формулы Бине:  

ВверхВниз   Решение


Из 12 девушек и 10 юношей выбирают команду, состоящую из пяти человек.
Сколькими способами можно выбрать эту команду так, чтобы в нее вошло не более трёх юношей?

ВверхВниз   Решение


Сколько слов можно составить из пяти букв А и не более чем из трёх букв Б?

ВверхВниз   Решение


Кубик бросают трижды. Среди всех возможных последовательностей результатов есть такие, в которых хотя бы один раз встречается шестёрка. Сколько их?

ВверхВниз   Решение


Решите в целых числах уравнения:   а)  x² – xy – y² = 1;   б)  x² – xy – y² = –1.

ВверхВниз   Решение


В Тридевятом царстве лишь один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов – по 20. Докажите, что из столицы можно долететь в Дальний (возможно, с пересадками).

ВверхВниз   Решение


Фибоначчиева система счисления. Докажите, что произвольное натуральное число n, не превосходящее Fm, единственным образом можно представит в виде

n = $\displaystyle \sum\limits_{k=2}^{m}$bkFk,

где все числа b2, ..., bm равны 0 либо 1, причем среди этих чисел нет двух единиц стоящих рядом, то есть bkbk + 1 = 0 (2 $ \leqslant$ k $ \leqslant$ m - 1). Для записи числа в фибоначчиевой системе счисления используется обозначение:

n = (bk...b2)F.


Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 60575  (#03.123)

Тема:   [ Числа Фибоначчи ]
Сложность: 4
Классы: 9,10,11

В последовательности чисел Фибоначчи выбрано 8 чисел, идущих подряд. Докажите, что их сумма не является числом Фибоначчи.

Прислать комментарий     Решение

Задача 60576  (#03.124)

Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Рассмотрим множество последовательностей длины n, состоящих из 0 и 1, в которых не бывает двух 1 стоящих рядом. Докажите, что количество таких последовательностей равно Fn + 2. Найдите взаимно-однозначное соответствие между такими последовательностями и маршрутами кузнечика из задачи 3.109.

Прислать комментарий     Решение

Задача 60577  (#03.125)

Темы:   [ Числа Фибоначчи ]
[ Системы счисления (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Фибоначчиева система счисления. Докажите, что произвольное натуральное число n, не превосходящее Fm, единственным образом можно представит в виде

n = $\displaystyle \sum\limits_{k=2}^{m}$bkFk,

где все числа b2, ..., bm равны 0 либо 1, причем среди этих чисел нет двух единиц стоящих рядом, то есть bkbk + 1 = 0 (2 $ \leqslant$ k $ \leqslant$ m - 1). Для записи числа в фибоначчиевой системе счисления используется обозначение:

n = (bk...b2)F.


Прислать комментарий     Решение

Задача 60578  (#03.126)

 [Формула Бине]
Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Докажите по индукции формулу Бине:

Fn = $\displaystyle {\dfrac{\varphi^n-\widehat{\varphi}^{n}}{\sqrt5}}$,

где $ \varphi$ = $ {\dfrac{1+\sqrt5}{2}}$ — ``золотое сечение'' или число Фидия, а $ \widehat{\varphi}$ = $ {\dfrac{1-\sqrt5}{2}}$ (``фи с крышкой'') — сопряженное к нему.

Прислать комментарий     Решение

Задача 60579  (#03.127)

Темы:   [ Числа Фибоначчи ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 9,10,11

Докажите следующий вариант формулы Бине:  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .