Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число.

Вниз   Решение


Какое наибольшее конечное число корней может иметь уравнение

|x-a1|+..+|x-a50|=|x-b1|+..+|x-b50|,

где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?

ВверхВниз   Решение


BK – биссектриса треугольника ABC. Известно, что  ∠AKB : ∠CKB = 4 : 5.  Найдите разность углов A и C треугольника ABC.

ВверхВниз   Решение


Через вершины B , C и D трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой AB , а её центр лежит на диагонали BD . Найдите периметр трапеции ABCD , если BC=9 , AD=25 .

ВверхВниз   Решение


Команды провели турнир по футболу в один круг (каждая с каждой сыграла один раз, победа – 3 очка, ничья – 1, поражение – 0). Оказалось, что единоличный победитель набрал менее 50% от количества очков, возможного для одного участника. Какое наименьшее количество команд могло участвовать в турнире?

ВверхВниз   Решение


Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке M. При этом  BM = AB,  ∠BAM = 35°,  ∠CAM = 15°.
Найдите углы треугольника ABC.

ВверхВниз   Решение


Пусть числа a и b определены равенством  a/b = [a0; a1, a2, ..., an].  Докажите, что уравнение  ax – by = 1  c неизвестными x и y имеет решением одну из пар  (Qn–1, Pn–1)  или  (– Qn–1, – Pn–1),  где  Pn–1/Qn–1  – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением?

Вверх   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 173]      



Задача 60599  (#03.147)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Числа Фибоначчи ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 9,10

Для каждого натурального n приведите пример прямоугольника, который разрезался бы ровно на n квадратов, среди которых должно быть не более двух одинаковых.

Прислать комментарий     Решение

Задача 60600  (#03.148)

 [Цепные дроби и электрические цепи]
Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 4
Классы: 10,11

Для данного рационального числа a/b постройте электрическую цепь из единичных сопротивлений, общее сопротивление которой равнялось бы a/b. Как такую цепь можно получить при помощи разбиения прямоугольника a×b на квадраты из задачи 60598?

Прислать комментарий     Решение

Задача 60601  (#03.149)

Темы:   [ Цепные (непрерывные) дроби ]
[ Линейные рекуррентные соотношения ]
[ Индукция (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

  Пусть a0 – целое, a1, ..., an – натуральные числа. Определим две последовательности
P–1 = 1,  P0 = a0,  Pk = akPk–1 + Pk–2  (1 ≤ k ≤ n);   Q–1 = 0,  Q0 = 1,  Qk = akQk–1 + Qk–2  (1 ≤ k ≤ n).
  Дроби Pk/Qk называются подходящими дробями к числу  [a0; a1, a2, ..., an].
  Докажите, что построенные последовательности для k = 0, 1, ..., n обладают следующими свойствами:
    а)  Pk/Qk = [a0; a1, a2,..., ak];
    б)  PkQk–1Pk–1Qk = (–1)k+1;
    в)   (Pk, Qk) = 1.

Прислать комментарий     Решение

Задача 60602  (#03.150)

Темы:   [ Цепные (непрерывные) дроби ]
[ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Докажите следующие свойства подходящих дробей:
  а)  PkQk–2Pk–2Qk = (–1)kak  (k ≥ 2);
  б)   =   (k ≥ 1);
  в)  Q1 < Q2 < ... < Qn;
  г)   < < < ... ≤ ≤ ... < < < ;

  д)   <   (k, l ≥ 0).

Прислать комментарий     Решение

Задача 60603  (#03.151)

Темы:   [ Цепные (непрерывные) дроби ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Пусть числа a и b определены равенством  a/b = [a0; a1, a2, ..., an].  Докажите, что уравнение  ax – by = 1  c неизвестными x и y имеет решением одну из пар  (Qn–1, Pn–1)  или  (– Qn–1, – Pn–1),  где  Pn–1/Qn–1  – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением?

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .