Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На боковых сторонах AB и AC равнобедренного треугольника ABC отмечены точки P и Q так, что  ∠PXB = ∠QXC,  где X – середина основания BC.
Докажите, что  BQ = CP.

Вниз   Решение


Две окружности касаются внешним образом. Прямая, проведённая через точку касания, образует в окружностях хорды, одна из которых равна 13/5 другой. Найдите радиусы окружностей, если расстояние между центрами равно 36.

ВверхВниз   Решение


В равнобедренном треугольнике ABC сторона  AC = b,  стороны  BA = BC = aAM и CN – биссектрисы углов A и C. Найдите MN.

ВверхВниз   Решение


Докажите, что значение любой периодической цепной дроби – квадратичная иррациональность.

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 173]      



Задача 60614  (#03.162)

 [Формат A4]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Найдите наименьшее натуральное n, для которого существует такое m, что  

Прислать комментарий     Решение

Задача 60615  (#03.163)

 [Числа из электрической розетки]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Найдите наименьшее натуральное n, для которого существует такое m, что  

Прислать комментарий     Решение

Задача 60616  (#03.164)

Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 4-
Классы: 10,11

Докажите, что значение любой периодической цепной дроби – квадратичная иррациональность.

Прислать комментарий     Решение

Задача 60617  (#03.165)

Темы:   [ Приближения чисел ]
[ Цепные (непрерывные) дроби ]
Сложность: 3+
Классы: 9,10,11

Найдите рациональное число, которое отличается от числа
  а)  α = ;   б)  α = 2 + ;   в)  α = 3 +   не более чем на 0,0001.

Прислать комментарий     Решение

Задача 60618  (#03.166)

Темы:   [ Цепные (непрерывные) дроби ]
[ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Докажите равенство:  []  = .

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .