Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.

Вниз   Решение


Какое число больше: 3111 или 1714?

ВверхВниз   Решение


В клетках прямоугольной таблицы 8×5 расставлены натуральные числа. За один ход разрешается одновременно удвоить все числа одной строки или же вычесть единицу из всех чисел одного столбца. Доказать, что за несколько ходов можно добиться того, чтобы все числа таблицы стали равными нулю.

ВверхВниз   Решение


Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.)

ВверхВниз   Решение


Докажите, что уравнение  3x² + 2 = y²  нельзя решить в целых числах.

ВверхВниз   Решение


a1, a2, ..., an  – такие числа, что  a1 + a2 + ... + an = 0.  Доказать, что в этом случае справедливо соотношение   S = a1a2 + a1a3 + ... + an–1an ≤ 0
(в сумму S входят все возможные произведения aiaj,  i ≠ j).

ВверхВниз   Решение


Докажите, что если при аффинном (не тождественном) преобразовании L каждая точка некоторой прямой l переходит в себя, то все прямые вида ML(M), где в качестве M берутся произвольные точки, не лежащие на прямой l, параллельны друг другу.

ВверхВниз   Решение


Доказать, что в произвольном выпуклом 2n-угольнике найдётся диагональ, не параллельная ни одной из его сторон.

ВверхВниз   Решение


Что больше: 792 или 891?

ВверхВниз   Решение


Пусть A1, B1, C1, D1 — образы точек A, B, C, D при аффинном преобразовании. Докажите, что если $ \overrightarrow{AB}$ = $ \overrightarrow{CD}$, то $ \overrightarrow{A_1B_1}$ = $ \overrightarrow{C_1D_1}$.

ВверхВниз   Решение


Окружность с центром I вписана в четырёхугольник ABCD. Лучи BA и CD пересекаются в точке P, а лучи AD и BC пересекаются в точке Q. Известно, что точка P лежит на описанной окружности ω треугольника AIC. Докажите, что точка Q тоже лежит на окружности ω.

ВверхВниз   Решение


Объясните поведение следующей десятичной дроби и найдите её период:  1/243 = 0,004115226337448...

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85]      



Задача 60839  (#05.001)

Тема:   [ Периодические и непериодические дроби ]
Сложность: 2
Классы: 6,7,8

Представьте следующие рациональные числа в виде десятичных дробей:
  а) 1/7;   б) 2/7;   в) 1/14;   г) 1/17.

Прислать комментарий     Решение

Задача 60840  (#05.002)

Темы:   [ Периодические и непериодические дроби ]
[ Перебор случаев ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Найдите цифры a и b, для которых   = 0,bbbbb...

Прислать комментарий     Решение

Задача 60841  (#05.003)

Темы:   [ Периодические и непериодические дроби ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 9,10

Найдите период дроби  1/49 = 0,0204081632...
Прислать комментарий     Решение


Задача 60842  (#05.004)

 [Число Фейнмана]
Темы:   [ Периодические и непериодические дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Объясните поведение следующей десятичной дроби и найдите её период:  1/243 = 0,004115226337448...

Прислать комментарий     Решение

Задача 60843  (#05.005)

Темы:   [ Периодические и непериодические дроби ]
[ Обыкновенные дроби ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 7,8,9

Представьте следующие числа в виде обычных и в виде десятичных дробей:
  а)  0,(12) + 0,(122);   б)  0,(3)·0,(4);   в)  0,(9) – 0,(85).

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .