ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть x1, x2 – корни уравнения x² + px + q = 0. Выразите через p и q следующие выражения: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
Пусть x1, x2 – корни уравнения x² + px + q = 0. Выразите через p и q следующие выражения:
Для многочленов f(x) = x² + ax + b и g(y) = y² + py + q с корнями x1, x2 и y1, y2 соответственно, выразите через a, b, p, q их результант R(f, g) = (x1 – y1)(x1 – y2)(x2 – y1)(x2 – y2).
Уравнение x² + px + q = 0 имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные: а) б) в) г)
aSm + bSm - 1 + cSm - 2 = 0, (m 2).
При каких значениях параметра a сумма квадратов корней уравнения x2 + 2ax + 2a2 + 4a + 3 = 0 является наибольшей? Чему равна эта сумма? (Корни рассматриваются с учётом кратности.)
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|