Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Профессии членов семьи. В семье Семеновых 5 человек: муж, жена, их сын, сестра мужа и отец жены. Все они работают. Один — инженер, другой — юрист, третий — слесарь, четвертый — экономист, пятый — учитель. Вот что еще известно о них. Юрист и учитель не кровные родственники. Слесарь — хороший спортсмен. Он пошел по стопам экономиста и играет в футбол за сборную завода. Инженер старше жены своего брата, но моложе, чем учитель. Экономист старше, чем слесарь. Назовите профессии каждого члена семьи Семеновых.

Вниз   Решение


Радиус вписанной окружности треугольника равен 1, длины высот — целые числа. Докажите, что треугольник правильный.

ВверхВниз   Решение


Что больше 200! или 100200?

ВверхВниз   Решение


Найти наибольшее значение, которое может принимать выражение  aek – afh + bfg – bdk + cdh – ceg,  если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1.

ВверхВниз   Решение


Определим последовательности чисел (xn) и (dn) условиями  x1 = 1,  xn+1 = [  ],  dn = x2n+1 – 2x2n–1  (n ≥ 1).
Докажите, что число в двоичной системе счисления представляется в виде  (d1,d2d3...)2.

ВверхВниз   Решение


На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?

ВверхВниз   Решение


Пусть  z = ei/n = cos /n + i sin /n.  Для произвольного целого a вычислите суммы
  а)  1 + za + z2a + ... + z(n–1)a;
  б)  1 + 2za + 3z2a + ... + nz(n–1)a.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 83]      



Задача 61120  (#07.056)

Тема:   [ Комплексная экспонента ]
Сложность: 4
Классы: 10,11

Как на комплексной плоскости определить показательную функцию az?

Прислать комментарий     Решение

Задача 61121  (#07.057)

Тема:   [ Комплексная экспонента ]
Сложность: 4
Классы: 10,11

Придайте смысл равенству   = (–1)1/i ≈ 231/7.

Прислать комментарий     Решение

Задача 61122  (#07.058)

Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 10,11

Пусть  z = ei/n = cos /n + i sin /n.  Для произвольного целого a вычислите суммы
  а)  1 + za + z2a + ... + z(n–1)a;
  б)  1 + 2za + 3z2a + ... + nz(n–1)a.

Прислать комментарий     Решение

Задача 61123  (#07.059)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4
Классы: 9,10,11

а) Докажите равенство:   cos φ + ... + cos nφ = ;
б) Вычислите сумму:   sinφ + ... + sin nφ.

Прислать комментарий     Решение

Задача 61124  (#07.060)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 10,11

Докажите равенство:   = tg nα.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .