Страница: 1
2 3 4 5 >> [Всего задач: 24]
Задача
61175
(#08.014)
|
|
Сложность: 2 Классы: 10,11
|
Пусть z1 и z2 – фиксированные точки
комплексной плоскости. Дайте геометрическое описание множеств всех точек z, удовлетворяющих соотношениям:
а) arg = 0; б) arg = 0.
Задача
61176
(#08.015)
|
|
Сложность: 2+ Классы: 10,11
|
Докажите, что угол между прямыми, пересекающимися в точке z0 и проходящими через точки z1 и z2, равен аргументу отношения
Задача
61177
(#08.016)
|
|
Сложность: 2+ Классы: 10,11
|
z2, z1, z0 лежат на одной прямой тогда и только тогда, когда
–
вещественное число, или = .
Задача
61178
(#08.017)
|
|
Сложность: 2+ Классы: 10,11
|
Докажите, что прямая, проходящая через точки z1 и
z2 – это геометрическое место точек z, для которых = .
Задача
61179
(#08.018)
|
|
Сложность: 3 Классы: 10,11
|
Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде Bz – B z + C = 0, где C – чисто мнимое число.
Страница: 1
2 3 4 5 >> [Всего задач: 24]