ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что точка  m = 1/3 (a1 + a2 + a3)  является точкой пересечения медиан треугольника a1a2a3.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 61195  (#08.034)

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 10,11

Докажите, что точка  m = 1/3 (a1 + a2 + a3)  является точкой пересечения медиан треугольника a1a2a3.

Прислать комментарий     Решение

Задача 55595  (#08.035)

 [Прямая Эйлера]
Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 8,9

Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.

Прислать комментарий     Решение


Задача 61197  (#08.036)

 [Прямая Симсона]
Темы:   [ Прямая Симсона ]
[ Геометрия комплексной плоскости ]
Сложность: 4-
Классы: 10,11

Пусть u – точка на единичной окружности  z = 1  и u1, u2, u3 – основания перпендикуляров, опущенных из u на стороны a2a3, a1a3, a1a2 вписанного в эту окружностьтреугольника a1a2a3.
  а) Докажите, что числа u1, u2, u3 вычисляются по формулам

  б) Докажите, что точки u1, u2, u3 лежат на одной прямой.

Прислать комментарий     Решение

Задача 61198  (#08.037)

Темы:   [ Три окружности пересекаются в одной точке ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 10,11

На плоскости расположены 4 прямые общего положения. Каждым трем прямым поставим в соответствие окружность, проходящую через точки их пересечения. Докажите, что 4 полученных окружности проходят через одну точку.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .