ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть $ \alpha$ и $ \beta$ — острые и положительные углы, удовлетворяющие равенствам

3 sin2$\displaystyle \alpha$ + 2 sin2$\displaystyle \beta$ = 1,
3 sin 2$\displaystyle \alpha$ - 2 sin 2$\displaystyle \beta$ = 0.

Докажите, что $ \alpha$ + 2$ \beta$ = $ {\frac{\pi}{2}}$.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 61204  (#08.043)

Тема:   [ Тригонометрические уравнения ]
Сложность: 2+
Классы: 9,10

Решите уравнение:

cos$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$cos 2$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$cos 4$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$cos 8$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$cos 16$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$ = $\displaystyle {\textstyle\frac{1}{32}}$.


Прислать комментарий     Решение

Задача 61205  (#08.044)

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10

Известно, что sin$ \beta$ = $ {\frac{1}{5}}$sin(2$ \alpha$ + $ \beta$). Докажите равенство:

tg ($\displaystyle \alpha$ + $\displaystyle \beta$) = $\displaystyle {\textstyle\frac{3}{2}}$tg $\displaystyle \alpha$.


Прислать комментарий     Решение

Задача 61206  (#08.045)

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 3-
Классы: 9,10

Пусть $ \alpha$ и $ \beta$ — острые и положительные углы, удовлетворяющие равенствам

3 sin2$\displaystyle \alpha$ + 2 sin2$\displaystyle \beta$ = 1,
3 sin 2$\displaystyle \alpha$ - 2 sin 2$\displaystyle \beta$ = 0.

Докажите, что $ \alpha$ + 2$ \beta$ = $ {\frac{\pi}{2}}$.

Прислать комментарий     Решение

Задача 61207  (#08.046)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Синусы и косинусы углов треугольника ]
Сложность: 3
Классы: 9,10

Докажите равенства:
а) sin 15o = $ {\dfrac{\sqrt6-\sqrt2}{4}}$,    cos 15o = $ {\dfrac{\sqrt6+\sqrt2}{4}}$;
б) sin 18o = $ {\dfrac{-1+\sqrt5}{4}}$,    cos 18o = $ {\dfrac{\sqrt{10+2\sqrt5}}{4}}$.

Прислать комментарий     Решение

Задача 61208  (#08.047)

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10

Докажите равенства:

sin 6o = $\displaystyle {\dfrac{\sqrt{30-6\sqrt5}-\sqrt{6+2\sqrt5}}{8}}$,    cos 6o = $\displaystyle {\dfrac{\sqrt{18+6\sqrt5}+\sqrt{10-2\sqrt5}}{8}}$.


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .