ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
б) Какой максимальной длины кусок проволоки можно вырезать из этого каркаса? (Длина ребра куба равна 1 см.)

Вниз   Решение


Докажите, что для любого натурального n справедливо неравенство  

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 61387  (#10.036)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10,11

Докажите неравенства:  
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61388  (#10.037)

 [Неравенство Коробова]
Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при  a1a2 ≥ ... ≥ an ≥ 0  выполняется неравенство  

Прислать комментарий     Решение

Задача 61389  (#10.038)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Докажите неравенство  (1 + x1)...(1 + xn) ≥ 2n,  где x1...xn = 1.
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61390  (#10.039)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что для любого натурального n справедливо неравенство  

Прислать комментарий     Решение

Задача 61391  (#10.040)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что для любого натурального n сумма     лежит в пределах от ½ до ¾.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .