ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть числа  y0, y1, ..., yn  таковы, что для любого многочлена  f (x) степени  m < n  справедливо равенство:       (*)
Докажите, что    ,   где λ – некоторое фиксированное число.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]      



Задача 61438  (#11.011)

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4+
Классы: 10,11

Вычислите сумму

$\displaystyle \sum\limits_{k=0}^{n}$Cnk(- 1)k$\displaystyle \left(\vphantom{1-\dfrac{k}{n}}\right.$1 - $\displaystyle {\dfrac{k}{n}}$$\displaystyle \left.\vphantom{1-\dfrac{k}{n}}\right)^{n}_{}$.


Прислать комментарий     Решение

Задача 61439  (#11.012)

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 10,11

Докажите, что для всех m в промежутке 1 $ \leqslant$ m < n выполняется равенство:

$\displaystyle \sum\limits_{k=1}^{n}$(- 1)kkmCnk = 0.


Прислать комментарий     Решение

Задача 61440  (#11.013)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Многочлены (прочее) ]
Сложность: 4
Классы: 10,11

Пусть числа  y0, y1, ..., yn  таковы, что для любого многочлена  f (x) степени  m < n  справедливо равенство:       (*)
Докажите, что    ,   где λ – некоторое фиксированное число.

Прислать комментарий     Решение

Задача 61441  (#11.014)

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 8,9,10,11

Докажите следующие свойства оператора взятия конечной разности, подобные свойствам оператора дифференцирования:

а) $ \Delta$$ {\dfrac{1}{b_n}}$ = - $ {\dfrac{\Delta
b_n}{b_nb_{n+1}}}$;        б) $ \Delta$$ \left(\vphantom{\dfrac{a_n}{b_n}}\right.$$ {\dfrac{a_n}{b_n}}$$ \left.\vphantom{\dfrac{a_n}{b_n}}\right)$ = $ {\dfrac{b_n\Delta a_n-a_n\Delta
b_n}{b_nb_{n+1}}}$.

Прислать комментарий     Решение

Задача 61442  (#11.015)

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 8,9,10,11

Найдите представление для $ \Delta$(an . bn) через $ \Delta$an и $ \Delta$bn. Сравните полученную формулу с формулой для производной произведения двух функций.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .