|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Ученик Коля Васин при помощи метода математической индукции смог доказать, что в любом табуне все лошади одной масти. Если есть только одна лошадь, то она своей масти, так что база индукции верна. Для индуктивного перехода предположим, что есть n лошадей (с номерами от 1 до n). По индуктивному предположению лошади с номерами от 1 до n - 1 одинаковой масти. Аналогично лошади с номерами от 2 до n также имеют одинаковую масть. Но лошади с номерами от 2 до n - 1 не могут менять свою масть в зависимости от того как они сгруппированы — это лошади, а не хамелеоны. Поэтому все n лошадей должны быть одинаковой масти. Есть ли ошибка в этом рассуждении, и если есть, то какая? |
Страница: 1 2 3 >> [Всего задач: 15]
Если есть только одна лошадь, то она своей масти, так что база индукции верна. Для индуктивного перехода предположим, что есть n лошадей (с номерами от 1 до n). По индуктивному предположению лошади с номерами от 1 до n - 1 одинаковой масти. Аналогично лошади с номерами от 2 до n также имеют одинаковую масть. Но лошади с номерами от 2 до n - 1 не могут менять свою масть в зависимости от того как они сгруппированы — это лошади, а не хамелеоны. Поэтому все n лошадей должны быть одинаковой масти. Есть ли ошибка в этом рассуждении, и если есть, то какая?
Иногда, вычитая дроби, можно вычитать их числители и складывать знаменатели. Например:
Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например, 49/98 = 4/8. Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".
sin a + sin b = sin(a + b)?
Страница: 1 2 3 >> [Всего задач: 15] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|