ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок обоими своими концами упирался строго внутрь других отрезков?

Вниз   Решение


Ученик Коля Васин при помощи метода математической индукции смог доказать, что в любом табуне все лошади одной масти.
Если есть только одна лошадь, то она своей масти, так что база индукции верна. Для индуктивного перехода предположим, что есть n лошадей (с номерами от 1 до n). По индуктивному предположению лошади с номерами от 1 до n - 1 одинаковой масти. Аналогично лошади с номерами от 2 до n также имеют одинаковую масть. Но лошади с номерами от 2 до n - 1 не могут менять свою масть в зависимости от того как они сгруппированы — это лошади, а не хамелеоны. Поэтому все n лошадей должны быть одинаковой масти.
Есть ли ошибка в этом рассуждении, и если есть, то какая?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 61529  (#12.001)

Темы:   [ Индукция (прочее) ]
[ Парадоксы ]
Сложность: 3
Классы: 8,9,10,11

Ученик Коля Васин при помощи метода математической индукции смог доказать, что в любом табуне все лошади одной масти.
Если есть только одна лошадь, то она своей масти, так что база индукции верна. Для индуктивного перехода предположим, что есть n лошадей (с номерами от 1 до n). По индуктивному предположению лошади с номерами от 1 до n - 1 одинаковой масти. Аналогично лошади с номерами от 2 до n также имеют одинаковую масть. Но лошади с номерами от 2 до n - 1 не могут менять свою масть в зависимости от того как они сгруппированы — это лошади, а не хамелеоны. Поэтому все n лошадей должны быть одинаковой масти.
Есть ли ошибка в этом рассуждении, и если есть, то какая?

Прислать комментарий     Решение

Задача 61530  (#12.002)

Темы:   [ Обыкновенные дроби ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9,10

Иногда, вычитая дроби, можно вычитать их числители и складывать знаменатели. Например:  
Для каких дробей это возможно?

Прислать комментарий     Решение

Задача 107736  (#12.003)

Темы:   [ Обыкновенные дроби ]
[ Десятичная система счисления ]
[ Перебор случаев ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8,9

Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например,  49/98 = 4/8.  Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".

Прислать комментарий     Решение

Задача 61532  (#12.004)

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 3
Классы: 10,11

Легко проверить равенства

log$\displaystyle \left(\vphantom{16+\dfrac{16}{15}}\right.$16 + $\displaystyle {\textstyle\dfrac{16}{15}}$$\displaystyle \left.\vphantom{16+\dfrac{16}{15}}\right)$ = log 16 + log$\displaystyle {\textstyle\dfrac{16}{15}}$;     log$\displaystyle \left(\vphantom{\dfrac{64}7-8}\right.$$\displaystyle {\textstyle\dfrac{64}{7}}$ - 8$\displaystyle \left.\vphantom{\dfrac{64}7-8}\right)$ = log$\displaystyle {\textstyle\dfrac{64}{7}}$ - log 8.

В каких еще случаях можно выносить логарифм за скобку?
Прислать комментарий     Решение

Задача 61533  (#12.005)

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 3
Классы: 9,10

При каких значениях a и b возможно равенство

sin a + sin b = sin(a + b)?


Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .