Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC точка C0 – середина гипотенузы AB, AA1, BB1 – биссектрисы, I – центр вписанной окружности.
Докажите, что прямые C0I и A1B1 пересекаются на высоте CH.

Вниз   Решение


Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q.
Докажите, что точки A, B', P, Q лежат на одной окружности.

ВверхВниз   Решение


Даны натуральные числа a и b, причём  a < b < 2a. На клетчатой плоскости отмечены некоторые клетки так, что в каждом клетчатом прямоугольнике a×b или b×a есть хотя бы одна отмеченная клетка. При каком наибольшем α можно утверждать, что для любого натурального N найдётся клетчатый квадрат N×N, в котором отмечено хотя бы αN² клеток?

ВверхВниз   Решение


Чётное число орехов разложено на три кучки. За одну операцию можно переложить половину орехов из кучки с чётным числом орехов в любую другую кучку. Докажите, что, как бы орехи ни были разложены изначально, такими операциями можно в какой-нибудь кучке собрать ровно половину всех орехов.

ВверхВниз   Решение


В стране лингвистов существует n языков. Там живет m людей, каждый из которых знает ровно три языка, причём для разных людей эти наборы различны. Известно, что максимальное число людей, любые два из которых могут поговорить без посредников, равно k. Оказалось, что  11nk ≤ m/2.
Докажите, что тогда в стране найдутся хотя бы mn пар людей, которые не смогут поговорить без посредников.

ВверхВниз   Решение


В клетках таблицы 3×3 расставлены числа так, что сумма чисел в каждом столбце и в каждой строке равна нулю. Какое наименьшее количество чисел, отличных от нуля, может быть в этой таблице, если известно, что оно нечётно?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Каждая буква в словах ЭХ и МОРОЗ соответствует какой-то цифре, причём одинаковым цифрам соответствуют одинаковые буквы, а разным – разные.

Известно, что  Э·Х = M·О·Р·О·З,  а  Э + Х = М + О + Р + О + З.  Чему равно  Э·Х + M·О·Р·О·З?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 18]      



Задача 64374

Тема:   [ Ребусы ]
Сложность: 4-
Классы: 6,7

Автор: Шноль Д.Э.

Каждая буква в словах ЭХ и МОРОЗ соответствует какой-то цифре, причём одинаковым цифрам соответствуют одинаковые буквы, а разным – разные.

Известно, что  Э·Х = M·О·Р·О·З,  а  Э + Х = М + О + Р + О + З.  Чему равно  Э·Х + M·О·Р·О·З?

Прислать комментарий     Решение

Задача 64375

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 6,7

В левом нижнем углу клетчатой доски n×n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите n.

Прислать комментарий     Решение

Задача 64384

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Разложение на множители ]
Сложность: 4-
Классы: 6,7

Автор: Фольклор

В шахматном турнире участвовали гроссмейстеры и мастера. По окончании турнира оказалось, что каждый участник набрал ровно половину своих очков в матчах с мастерами. Докажите, что количество участников турнира является квадратом целого числа. (Каждый участник сыграл с каждым по одной партии, победа – 1 очко, ничья – ½ очка, поражение – 0 очков.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .