ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)? |
Страница: 1 2 3 >> [Всего задач: 15]
Решите уравнение: x(x + 1) = 2014·2015.
Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?
Три пирата нашли клад, состоящий из 240 золотых слитков общей стоимостью 360 долларов. Стоимость каждого слитка известна и выражается целым числом долларов. Может ли оказаться так, что добычу нельзя разделить между пиратами поровну, не переплавляя слитки?
Марья Петровна идет по дороге со скоростью 4 км/ч. Увидев пенёк, она садится на него и отдыхает одно и то же целое число минут. Михаил Потапович идёт по той же дороге со скоростью 5 км/ч, зато сидит на каждом пеньке в два раза дольше чем Марья Петровна. Вышли и пришли они одновременно. Длина дороги – 11 км. Сколько на ней могло быть пеньков?
Точка D – середина гипотенузы АВ прямоугольного треугольника ABC, ∠ВАС = 35°. Точка B1 симметрична точке B относительно прямой СD.
Страница: 1 2 3 >> [Всего задач: 15]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке