ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике ABCD AB = BC. На диагонали BD выбрана такая точка K, что ∠AKB + ∠BKC = ∠A + ∠C. |
Страница: << 1 2 3 4 5 >> [Всего задач: 25]
Выпуклый n-угольник разрезан на три выпуклых многоугольника. У одного из них n сторон, у другого – больше чем n, у третьего – меньше чем n.
В прямоугольном треугольнике ABC CH – высота, проведённая к гипотенузе. Окружность с центром H и радиусом CH пересекает больший катет AC в точке M. Точка B' симметрична точке B относительно H. В точке B' восставлен перпендикуляр к гипотенузе, который пересекает окружность в точке K. Докажите, что:
В выпуклом четырёхугольнике ABCD AB = BC. На диагонали BD выбрана такая точка K, что ∠AKB + ∠BKC = ∠A + ∠C.
На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
В остроугольном треугольнике ABC AA1, BB1 и CC1 – высоты. Прямые AA1 и B1C1 пересекаются в точке K. Окружности, описанные вокруг треугольников A1KC1 и A1KB1, вторично пересекают прямые AB и AC в точках N и L соответственно. Докажите, что б)
Страница: << 1 2 3 4 5 >> [Всего задач: 25] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|