ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При всяком ли натуральном n > 2009 из дробей можно выбрать две пары дробей с одинаковыми суммами? Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]
Выпуклый пятиугольник ABCDE таков, что AB || CD, BC || AD, AC || DE, CE ⊥ BC. Докажите, что EC – биссектриса угла BED.
В выпуклом четырёхугольнике ABCD некоторая точка диагонали АС принадлежит серединным перпендикулярам к сторонам АВ и CD, а некоторая точка диагонали BD принадлежит серединным перпендикулярам к сторонам AD и ВС. Докажите, что ABCD – прямоугольник.
В футбольном турнире участвовало 8 команд, причём каждая сыграла с каждой ровно по одному разу. Известно, что каждые две команды, сыгравшие между собой вничью, набрали в итоге разное число очков. Найдите наибольшее возможное общее число ничьих в этом турнире. (За выигрыш матча команде начисляется 3 очка, за ничью – 1, за поражение – 0.)
При всяком ли натуральном n > 2009 из дробей можно выбрать две пары дробей с одинаковыми суммами?
В треугольнике ABC стороны AB и BC равны. Точка D внутри треугольника такова, что угол ADC вдвое больше угла ABC.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|