ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 65063

Тема:   [ Степень вершины ]
Сложность: 3+
Классы: 8,9

Автор: Гравин Н.

В стране Леонардии все дороги – с односторонним движением. Каждая дорога соединяет два города и не проходит через другие города. Департамент статистики вычислил для каждого города суммарное число жителей в городах, откуда в него ведут дороги, и суммарное число жителей в городах, куда ведут дороги из него. Докажите, что хотя бы для одного города первое число оказалось не меньше второго.

Прислать комментарий     Решение

Задача 65064

Темы:   [ НОД и НОК. Взаимная простота ]
[ Четность и нечетность ]
[ Признаки делимости на 3 и 9 ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Можно ли вместо звёздочек вставить в выражение  НОК(*, *, *) – НОК(*, *, *) = 2009  в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?

Прислать комментарий     Решение

Задача 65065

Темы:   [ Четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD выполнены соотношения  AB = BD,  ∠ABD = ∠DBC.  На диагонали BD нашлась такая точка K, что  BK = BC.
Докажите, что  ∠KAD = ∠KCD.

Прислать комментарий     Решение

Задача 65069

Темы:   [ Арифметические действия. Числовые тождества ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Найдите какие-нибудь семь последовательных натуральных чисел, каждое из которых можно изменить (увеличить или уменьшить) на 1 таким образом, чтобы произведение семи полученных в результате чисел равнялось произведению семи исходных чисел.

Прислать комментарий     Решение

Задача 65070

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что  AB = AK.  Отрезок AK пересекает биссектрису CL в её середине.
Найдите острые углы треугольника ABC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .