Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 48]
На столе лежит 10 кучек с 1, 2, 3, 4, 5, 6, 7, 8, 9 и 10 орехами. Двое играющих берут по очереди по одному ореху. Игра заканчивается, когда на столе останется три ореха. Если это – три кучки по одному ореху, выигрывает тот, кто ходил вторым, иначе – его соперник. Кто из игроков может выиграть, как бы не играл соперник?
При каком наибольшем n можно раскрасить числа 1, 2, ..., 14 в красный и синий цвета так, чтобы для каждого числа k = 1, 2, ..., n нашлись пара синих чисел, разность между которыми равна k, и пара красных чисел, разность между которыми тоже равна k?
Биссектрисы углов A и C трапеции ABCD пересекаются в точке P, а биссектрисы углов B и D – в точке Q, отличной от P.
Докажите, что если отрезок PQ параллелен основанию AD, то трапеция равнобокая.
В Швамбрании некоторые города связаны двусторонними беспосадочными авиарейсами. Рейсы разделены между тремя авиакомпаниями, причём если какая-то авиакомпания обслуживает линию между городами А и Б, то самолёты других компаний между этими городами не летают. Известно, что из каждого города летают самолёты всех трёх компаний. Докажите, что можно, вылетев из некоторого города, вернуться в него, воспользовавшись по пути рейсами всех трёх компаний и не побывав ни в одном из промежуточных городов дважды.
В четырёхугольнике ABCD сторона AB равна диагонали AC и перпендикулярна стороне AD, а диагональ AC перпендикулярна стороне CD. На стороне AD взята такая точка K , что AC = AK. Биссектриса угла ADC пересекает BK в точке M. Найдите угол ACM.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 48]