ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Числа a и b таковы, что каждый из двух квадратных трёхчленов x² + ax + b и x² + bx + a имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней. |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
Числа a и b таковы, что каждый из двух квадратных трёхчленов x² + ax + b и x² + bx + a имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней.
Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Параллелограмм ABCD таков, что ∠B < 90° и AB < BC. Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D. Оказалось, что ∠EDA = ∠FDC. Найдите угол ABC.
Параллелограмм ABCD таков, что ∠B < 90° и AB < BC. Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D. Оказалось, что ∠EDA = ∠FDC. Найдите угол ABC.
Дан параллелограмм ABCD, в котором AB < AC < BC. Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D; при этом отрезки AD и CE пересекаются. Оказалось, что ∠ABF = ∠DCE. Найдите угол ABC.
Страница: 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке