ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Рассматривается последовательность квадратов на плоскости. Первые два квадрата со стороной 1 расположены рядом (второй правее) и имеют одну общую вертикальную сторону. Нижняя сторона третьего квадрата со стороной 2 содержит верхние стороны первых двух квадратов. Правая сторона четвёртого квадрата со стороной 3 содержит левые стороны первого и третьего квадратов. Верхняя сторона пятого квадрата со стороной 5 содержит нижние стороны первого, второго и четвертого квадратов. Далее двигаемся по спирали бесконечно, обходя рассмотренные квадраты против часовой стрелки так, что сторона нового квадрата составлена из сторон трёх ранее рассмотренных. Докажите, что центры всех этих квадратов принадлежат двум прямым.
В стране больше 101 города. Столица соединена авиалиниями со 100 городами, а каждый город, кроме столицы, соединён авиалиниями ровно с десятью городами (если A соединён с B, то B соединён с A). Известно, что из каждого города можно попасть в любой другой (может быть, с пересадками). Доказать, что можно закрыть половину авиалиний, идущих из столицы, так, что возможность попасть из каждого города в любой другой сохранится. a, b, c – натуральные числа, НОД(a, b, c) = 1 и Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не
превышает 103°.
Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений). |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений).
Пусть p – простое число. Сколько существует таких натуральных n, что pn делится на p + n?
Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.). б) При каких n > 4 существует выдающийся многоугольник из n клеток?
Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
Докажите, что сумма длин любых двух медиан произвольного треугольника
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке