Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?

Вниз   Решение


В шахматном кружке занимаются 2 девочки и 7 мальчиков. Для участия в соревновании необходимо составить команду из четырёх человек, в которую обязательно должна входить хотя бы одна девочка. Сколькими способами это можно сделать?

ВверхВниз   Решение


Докажите справедливость формулы  

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.

ВверхВниз   Решение


Сколькими способами можно разбить 10 человек на две баскетбольные команды по 5 человек в каждой?

ВверхВниз   Решение


Чему равны числа Фибоначчи с отрицательными номерами F-1, F-2, ..., F-n,...?


ВверхВниз   Решение


На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что  AB = AK.  Отрезок AK пересекает биссектрису CL в её середине.
Найдите острые углы треугольника ABC.

ВверхВниз   Решение


Тождество Кассини. Докажите равенство

Fn + 1Fn - 1 - Fn2 = (- 1)n        (n > 0).


Будет ли тождество Кассини справедливо для всех целых n?

ВверхВниз   Решение


Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку, – со скоростью 6 км/ч. Не ошибся ли барон?

ВверхВниз   Решение


а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?

в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?

ВверхВниз   Решение


В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.

ВверхВниз   Решение


Верно ли, что два графа изоморфны, если
  а) у них по 10 вершин, степень каждой из которых равна 9?
  б) у них по 8 вершин, степень каждой из которых равна 3?
  в) они связны, без циклов и содержат по 6 рёбер?

ВверхВниз   Решение


  а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги.
Сколькими cпособами можно проехать от A до C?
  б) В Стране Чудес построили еще один город D и несколько новых дорог – две из A в D и две из D в C.
Сколькими способами можно теперь добраться из города A в город C?

ВверхВниз   Решение


Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

ВверхВниз   Решение


В треугольнике ABC на стороне BC отмечена точка K. В треугольники ABK и ACK вписаны окружности, первая касается стороны BC в точке M, вторая – в точке N. Докажите, что  BM·CN > KM·KN.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 65555  (#1)

Темы:   [ Треугольники (прочее) ]
[ Рациональные и иррациональные числа ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.

Прислать комментарий     Решение

Задача 65556  (#2)

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9,10,11

Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что  AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?

Прислать комментарий     Решение

Задача 65557  (#3)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Какое наибольшее число коней можно расставить на шахматной доске так, чтобы каждый бил не более семи из остальных?

Прислать комментарий     Решение

Задача 65558  (#4)

Темы:   [ Средние величины ]
[ Принцип Дирихле (прочее) ]
[ Неравенство Коши ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Ваня задумал два положительных числа x и y. Он записал числа  x + y,  x – y,  xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y.

Прислать комментарий     Решение

Задача 65559  (#5)

Темы:   [ Вписанные и описанные окружности ]
[ Неравенство треугольника (прочее) ]
[ Подобие ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC на стороне BC отмечена точка K. В треугольники ABK и ACK вписаны окружности, первая касается стороны BC в точке M, вторая – в точке N. Докажите, что  BM·CN > KM·KN.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .