ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 65453

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Верно ли, что любое натуральное число можно умножить на одно из чисел 1, 2, 3, 4 или 5 так, чтобы результат начинался на цифру 1?

Прислать комментарий     Решение

Задача 65468

Темы:   [ Геометрическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 10,11

Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.
Докажите, что 19-й член прогрессии является 18-й степенью натурального числа.

Прислать комментарий     Решение

Задача 65715

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков?

Прислать комментарий     Решение

Задача 65717

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9,10

Автор: Фольклор

Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?

Прислать комментарий     Решение

Задача 65725

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

На длинной ленте бумаги выписали все числа от 1 до 1000000 включительно (в некотором произвольном порядке). Затем ленту разрезали на кусочки по две цифры в каждом кусочке. Докажите, что в каком бы порядке ни выписывались числа, на кусочках встретятся все двузначные числа.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .