Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 41]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть M – середина основания AC равнобедренного треугольника ABC. На сторонах AB и BC отмечены соответственно точки E и F так, что AE ≠ CF и
∠FMC = ∠MEF = α. Найдите ∠AEM.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Трое играют в "камень-ножницы-бумагу". В каждом раунде каждый наугад показывает "камень", "ножницы" или "бумагу". "Камень" побеждает "ножницы", "ножницы" побеждают "бумагу", "бумага" побеждает "камень". Если в раунде было показано ровно два различных элемента (и значит, один из них показали дважды), то игроки (или игрок), показавшие победивший элемент, получают по 1 баллу; иначе баллы никому не начисляются. После нескольких раундов оказалось, что все элементы были показаны одинаковое количество раз. Докажите, что в этот момент сумма набранных всеми баллов делилась на 3.
На катетах AC и BC прямоугольного треугольника ABC отметили точки K и L соответственно, а на гипотенузе AB – точку M так, что AK = BL = a,
KM = LM = b и угол KML прямой. Докажите, что a = b.
|
|
Сложность: 4- Классы: 9,10,11
|
Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD.
|
|
Сложность: 4- Классы: 10,11
|
Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 41]