ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC проведены
высоты AA1 и CC1. Точки A2 и C2 симметричны A1 и C1
относительно середин сторон BC и AB. Докажите, что прямая,
соединяющая вершину B с центром O описанной окружности, делит
отрезок A2C2 пополам.
Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов? В городе, где живет Рассеянный Ученый, телефонные номера состоят из 7 цифр. Ученый легко запоминает телефонный номер, если этот номер палиндром, то есть он одинаково читается слева направо и справа налево. Например, номер 4435344 Ученый запоминает легко, потому что этот номер палиндром. А номер 3723627 не палиндром, поэтому Ученый такой номер запоминает с трудом. Найдите вероятность того, что телефонный номер нового случайного знакомого Ученый запомнит легко. Найдите остаток от деления многочлена P(x) = x81 + x27 + x9 + x³ + x на Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами? Окружность с центром I вписана в четырёхугольник ABCD. Лучи BA и CD пересекаются в точке P, а лучи AD и BC пересекаются в точке Q. Известно, что точка P лежит на описанной окружности ω треугольника AIC. Докажите, что точка Q тоже лежит на окружности ω. |
Страница: 1 2 >> [Всего задач: 8]
В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?
Окружность с центром I вписана в четырёхугольник ABCD. Лучи BA и CD пересекаются в точке P, а лучи AD и BC пересекаются в точке Q. Известно, что точка P лежит на описанной окружности ω треугольника AIC. Докажите, что точка Q тоже лежит на окружности ω.
Паша выбрал 2017 (не обязательно различных) натуральных чисел a1, a2, ..., a2017 и играет сам с собой в следующую игру. Изначально у него есть неограниченный запас камней и 2017 больших пустых коробок. За один ход Паша добавляет в любую коробку (по своему выбору) a1 камней, в любую из оставшихся коробок (по своему выбору) – a2 камней, ..., наконец, в оставшуюся коробку – a2017 камней. Пашина цель – добиться того, чтобы после некоторого хода во всех коробках стало поровну камней. Мог ли он выбрать числа так, чтобы цели можно было добиться за 43 хода, но нельзя – за меньшее ненулевое число ходов?
Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения P(n1)P(n2)...P(nk). По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным?
Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по ненулевому числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке