ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сколькими способами можно построить замкнутую ломаную, вершинами которой являются вершины правильного шестиугольника (ломаная может быть самопересекающейся)?

Вниз   Решение


На стороне ВС равностороннего треугольника АВС отмечена точка D. Точка Е такова, что треугольник BDE – также равносторонний.
Докажите, что  CE = AD.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 69]      



Задача 66126

Темы:   [ Уравнения в целых числах ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Существуют ли 11 последовательных натуральных чисел, сумма которых равна точному кубу?

Прислать комментарий     Решение

Задача 66127

Темы:   [ Правильный (равносторонний) треугольник ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 7,8

На стороне ВС равностороннего треугольника АВС отмечена точка D. Точка Е такова, что треугольник BDE – также равносторонний.
Докажите, что  CE = AD.

Прислать комментарий     Решение

Задача 57000

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Докажите, что OO1 = OO2.

Прислать комментарий     Решение

Задача 65947

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Найдите наименьшее простое число, которое можно представить в виде суммы пяти различных простых чисел.

Прислать комментарий     Решение

Задача 65948

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 8,9

В корзине лежало не более 70 грибов, среди которых 52% – белые. Если выкинуть три самых маленьких гриба, то белых станет половина.
Сколько грибов в корзине?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .