ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сто гномов, веса которых равны 1, 2, 3, ..., 100 фунтов, собрались на левом берегу реки. Плавать они не умеют, но на этом же берегу находится гребная лодка грузоподъемностью 100 фунтов. Из-за течения плыть обратно трудно, поэтому у каждого гнома хватит сил грести с правого берега на левый не более одного раза (грести в лодке достаточно любому из гномов; гребец в течение одного рейса не меняется). Смогут ли все гномы переправиться на правый берег?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 66156  (#11.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 9,10,11

Остроугольный равнобедренный треугольник ABC  (AB = AC)  вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.

Прислать комментарий     Решение

Задача 66149  (#9.3)

Темы:   [ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

Сто гномов, веса которых равны 1, 2, 3, ..., 100 фунтов, собрались на левом берегу реки. Плавать они не умеют, но на этом же берегу находится гребная лодка грузоподъемностью 100 фунтов. Из-за течения плыть обратно трудно, поэтому у каждого гнома хватит сил грести с правого берега на левый не более одного раза (грести в лодке достаточно любому из гномов; гребец в течение одного рейса не меняется). Смогут ли все гномы переправиться на правый берег?

Прислать комментарий     Решение

Задача 66157  (#10.3)

Тема:   [ Симметричная стратегия ]
Сложность: 4
Классы: 8,9,10

Изначально на столе лежат три кучки из 100, 101 и 102 камней соответственно. Илья и Костя играют в следующую игру. За один ход каждый из них может взять себе один камень из любой кучи, кроме той, из которой он брал камень на своем предыдущем ходе (при своём первом ходе каждый игрок может брать камень из любой кучки). Ходы игроки делают по очереди, начинает Илья. Проигрывает тот, кто не может сделать ход. Кто из игроков может выиграть, как бы ни играл соперник?

Прислать комментарий     Решение

Задача 66158  (#11.3)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Петров Ф.

На доске выписаны в ряд n положительных чисел a1, a2, ..., an. Вася хочет выписать под каждым числом ai число  bi ≥ ai  так, чтобы для каждых двух из чисел b1, b2, ..., bn отношение одного из них к другому было целым. Докажите, что Вася может выписать требуемые числа так, чтобы выполнялось неравенство  b1b2...bn ≤ 2(n–1)/2a1a2...an.

Прислать комментарий     Решение

Задача 66150  (#9.4)

Темы:   [ Последовательности (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

Существует ли такая бесконечная возрастающая последовательность a1, a2, a3, ... натуральных чисел, что сумма любых двух различных членов последовательности взаимно проста с суммой любых трёх различных членов последовательности?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .