Страница: 1
2 3 4 5 >> [Всего задач: 24]
Задача
66147
(#9.1)
|
|
Сложность: 3+ Классы: 8,9,10
|
В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A доступен для города B, если из B можно долететь в A, возможно, с пересадками. Известно, что для любых двух городов P и Q существует город R, для которого и P, и Q доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)
Задача
66155
(#10.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
На координатной плоскости нарисованы графики двух приведённых квадратных трёхчленов и две непараллельные прямые l1 и l2. Известно, что отрезки, высекаемые графиками на l1, равны, и отрезки, высекаемые графиками на l2, также равны. Докажите, что графики трёхчленов совпадают.
Задача
66162
(#11.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Число x таково, что обе суммы S = sin 64x + sin 65x и C = cos 64x + cos 65x – рациональные числа.
Докажите, что в одной из этих сумм оба слагаемых рациональны.
Задача
66148
(#9.2)
|
|
Сложность: 4- Классы: 8,9,10
|
Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.
Задача
66156
(#10.2)
|
|
Сложность: 4- Классы: 9,10,11
|
Остроугольный равнобедренный треугольник ABC (AB = AC) вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.
Страница: 1
2 3 4 5 >> [Всего задач: 24]