|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m? В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный. Решите уравнение |
Страница: 1 2 3 >> [Всего задач: 15]
Решите уравнение
В четырёхугольнике ABCD AB = ВС = m, ∠АВС = ∠АDС = 120°. Найдите BD.
В зале стоят шесть стульев в два ряда – по три стула в каждом, один ряд ровно за другим. В зал пришли шесть человек различного роста.
Какие значения может принимать выражение x + y + z, если sin x = cos y, sin y = cos z, sin z = cos x, 0 ≤ x, y, z ≤ π/2?
Может ли квадрат являться развёрткой некоторой треугольной пирамиды?
Страница: 1 2 3 >> [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|