ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого. |
Страница: 1 2 >> [Всего задач: 6]
Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого.
Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD.
На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.
Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.
Фиксированы окружность, описанная около остроугольного треугольника ABC, и вершина C. Ортоцентр H движется по окружности с центром в точке C. Найдите ГМТ середин отрезков, соединяющих основания высот, проведенных из вершин A и B.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке