ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Четырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются. Решение |
Страница: << 1 2 [Всего задач: 7]
Четырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются.
Король решил поощрить группу из $n$ мудрецов. Их поставят в ряд друг за другом (чтобы все смотрели в одном направлении), на каждого наденут чёрную или белую шляпу. Каждый будет видеть шляпы всех впереди стоящих. Мудрецы по очереди (от последнего к первому) назовут цвет (белый или чёрный) и натуральное число по своему выбору. В конце подсчитывается число мудрецов, которые назвали цвет, совпадающий с цветом своей шляпы: ровно столько дней всей группе будут платить надбавку к жалованью. Мудрецам разрешили договориться заранее, как отвечать. При этом мудрецы знают, что ровно $k$ из них безумны (кто именно – им неизвестно). Безумный мудрец называет белый или чёрный цвет и число вне зависимости от договорённостей. Какое максимальное число дней с надбавкой к жалованью могут гарантировать группе мудрецы, независимо от местонахождения безумных в очереди?
Страница: << 1 2 [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|