Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Из центра окружности выходят N векторов, концы которых делят её на N равных дуг. Некоторые векторы синие, остальные – красные. Подсчитаем сумму углов "красный вектор – синий вектор" (каждый угол вычисляется от красного вектора к синему против часовой стрелки) и разделим её на общее число всех таких углов. Докажите, что полученная величина "среднего угла" равна 180°.

Вниз   Решение


Арбуз имеет форму шара диаметра 20 см. Вася сделал длинным ножом три взаимно перпендикулярных плоских надреза глубиной h (надрез – это сегмент круга, h – высота сегмента, плоскости надрезов попарно перпендикулярны). Обязательно ли при этом арбуз разделится хотя бы на два куска, если
  а)  h = 17 см;
  б)  h = 18 см?

ВверхВниз   Решение


Углы AOB и COD совмещаются поворотом так, что луч OA совмещается с лучом OC, а луч OB – с OD. В них вписаны окружности, пересекающиеся в точках E и F. Доказать, что углы AOE и DOF равны.

ВверхВниз   Решение


Для турнира изготовили 7 золотых, 7 серебряных и 7 бронзовых медалей. Все медали из одного металла должны весить одинаково, а из разных должны иметь различные массы. Но одна из всех медалей оказалась нестандартной – имела неправильную массу. При этом нестандартная золотая медаль может весить только меньше стандартной золотой, бронзовая – только больше стандартной бронзовой, а серебряная может отличаться по весу от стандартной серебряной в любую сторону. Можно ли за три взвешивания на чашечных весах без гирь найти нестандартную медаль?

ВверхВниз   Решение


Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли
  а) хоть одна из четырёх его клеток целиком накрыта одним из этих треугольников;
  б) в один из этих треугольников можно поместить квадрат со стороной 1?

ВверхВниз   Решение


Натуральные числа от 1 до 100 раскрашены в три цвета: 50 чисел – в красный, 25 чисел – в жёлтый и 25 – в зелёный. Известно, что все красные и жёлтые числа можно разбить на 25 троек так, чтобы в каждой тройке было два красных числа и одно жёлтое, которое больше одного красного и меньше другого. Аналогичное утверждение верно для красных и зелёных чисел. Обязательно ли все 100 чисел можно разбить на 25 четвёрок, в каждой из которых два красных числа, одно жёлтое и одно зелёное, при этом жёлтое и зелёное числа лежат между красными?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



Задача 67268

Тема:   [ Отношение порядка ]
Сложность: 5
Классы: 8,9,10,11

Натуральные числа от 1 до 100 раскрашены в три цвета: 50 чисел – в красный, 25 чисел – в жёлтый и 25 – в зелёный. Известно, что все красные и жёлтые числа можно разбить на 25 троек так, чтобы в каждой тройке было два красных числа и одно жёлтое, которое больше одного красного и меньше другого. Аналогичное утверждение верно для красных и зелёных чисел. Обязательно ли все 100 чисел можно разбить на 25 четвёрок, в каждой из которых два красных числа, одно жёлтое и одно зелёное, при этом жёлтое и зелёное числа лежат между красными?
Прислать комментарий     Решение


Задача 67269

Темы:   [ Арифметическая прогрессия ]
[ Арифметика остатков (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Пусть X – некоторое множество целых чисел, которое можно разбить на N непересекающихся возрастающих арифметических прогрессий (бесконечных в обе стороны), а меньше чем на N – нельзя. Для любого ли такого X такое разбиение на N прогрессий единственно, если а) N = 2; б) N = 3?

(Возрастающая арифметическая прогрессия – это последовательность, в которой каждое число больше своего соседа слева на одну и ту же положительную величину.)
Прислать комментарий     Решение


Задача 67298

Темы:   [ Теория алгоритмов (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 5
Классы: 8,9,10,11

Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.)
Прислать комментарий     Решение


Задача 67299

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 8,9,10,11

В ряд слева направо стоят $N$ коробок, занумерованных подряд числами $1$, $2, \ldots, N$. В некоторые коробки, стоящие подряд, положат по шарику, оставив остальные пустыми. Инструкция состоит из последовательно выполняемых команд вида «поменять местами содержимое коробок № $i$ и № $j$», где $i$ и $j$ – числа. Для каждого ли $N$ существует инструкция, в которой не больше $100N$ команд, со свойством: для любой начальной раскладки указанного вида можно будет, вычеркнув из инструкции некоторые команды, получить инструкцию, после выполнения которой все коробки с шариками будут левее коробок без шариков?
Прислать комментарий     Решение


Задача 67158

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 5+
Классы: 8,9,10,11

Известно, что среди нескольких купюр, номиналы которых – попарно различные натуральные числа, есть ровно $N$ фальшивых. Детектор за одну проверку определяет сумму номиналов всех настоящих купюр, входящих в выбранный нами набор. Докажите, что за $N$ проверок можно найти все фальшивые купюры, если а) $N = 2$; б) $N = 3$.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .