ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади. Все коэффициенты многочлена равны 1, 0 или –1. Точки $A'$, $B'$, $C'$ соответственно симметричны вершинам $A$, $B$, $C$ относительно противоположных сторон треугольника $ABC$. Докажите, что окружности $AB'C'$, $A'BC'$ и $A'B'C$ пересекаются в одной точке. Даны три попарно различные точки на прямой. Сколько существует равнобедренных треугольников, в которых они являются (в каком-нибудь порядке) центрами описанной, вписанной и вневписанной окружностей? Докажите тождество
В остроугольном треугольнике $ABC$ проведены высоты $AH_A$, $BH_B$, $CH_C$. Пусть $X$ – произвольная точка отрезка $CH_C$, а $P$ – точка пересечения окружностей с диаметрами $H_CX$ и $BC$, отличная от $H_C$. Прямые $CP$ и $AH_A$ пересекаются в точке $Q$, а прямые $XP$ и $AB$ – в точке $R$. Докажите, что точки $A$, $P$, $Q$, $R$, $H_B$ лежат на одной окружности. Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы? По окружности выписаны n чисел x1, x2, ..., xn, каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого k = 1, 2, ..., n – 1 сумма n произведений чисел, отстоящих друг от друга на k мест, равна нулю |
Страница: 1 [Всего задач: 4]
По окружности выписаны n чисел x1, x2, ..., xn, каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого k = 1, 2, ..., n – 1 сумма n произведений чисел, отстоящих друг от друга на k мест, равна нулю
Один из простейших многоклеточных
Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах АВ, ВС
Для каждого натурального n > 1 существует такое число cn, что для любого x произведение синуса числа x, синуса числа x + π/n, синуса числа
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке