ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В городе одна синяя площадь и n зелёных, причём каждая зелёная площадь соединена улицами с синей и с двумя зелёными, как показано на рисунке. На каждой из 2n улиц ввели одностороннее движение так, что на каждую площадь можно проехать и с каждой – уехать. Докажите, что с каждой площади этого города можно, не нарушая правил, доехать до любой из остальных.

   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 73797  (#М262)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Полуинварианты ]
[ Подсчет двумя способами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Какое наибольшее количество  а) ладей;  б) ферзей можно расставить на шахматной доске 8×8 так, чтобы каждая из этих фигур была под ударом не более чем одной из остальных?

Прислать комментарий     Решение

Задача 73799  (#М264)

Темы:   [ Ориентированные графы ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

В городе одна синяя площадь и n зелёных, причём каждая зелёная площадь соединена улицами с синей и с двумя зелёными, как показано на рисунке. На каждой из 2n улиц ввели одностороннее движение так, что на каждую площадь можно проехать и с каждой – уехать. Докажите, что с каждой площади этого города можно, не нарушая правил, доехать до любой из остальных.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .