ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На диагоналях AC и BD трапеции ABCD взяты соответственно
точки M и N так, что AM : MC = DN : NB = 1 : 4.
В трапеции ABCD углы при основании AD удовлетворяют
неравенству
Существуют ли 11 последовательных натуральных чисел, сумма которых равна точному кубу? Доказать, что многочлен с целыми коэффициентами a0xn + a1xn–1 + ... + an–1x + an, принимающий при x = 0 и x = 1 нечётные значения, не имеет целых корней. |
Страница: 1 2 >> [Всего задач: 6]
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.
Доказать, что многочлен с целыми коэффициентами a0xn + a1xn–1 + ... + an–1x + an, принимающий при x = 0 и x = 1 нечётные значения, не имеет целых корней.
Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.
Решить уравнение:
| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке