Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Петя написал на гранях кубика натуральные числа от 1 до 6. Вася кубика не видел, но утверждает, что

а) у этого кубика есть две соседние грани, на которых написаны соседние числа;

б) таких пар соседних граней у кубика не меньше двух.

Прав ли он в обоих случаях? Почему?

Вниз   Решение


На плоскости нельзя расположить семь прямых и семь точек так, чтобы через каждую из точек проходили три прямые и на каждой прямой лежали три точки. Докажите это.

ВверхВниз   Решение


12 полей расположены по кругу: на четырёх соседних полях стоят четыре разноцветных фишки: красная, жёлтая, зелёная и синяя. Одним ходом можно передвинуть любую фишку с поля, на котором она стоит, через четыре поля на пятое (если оно свободно) в любом из двух возможных направлений. После нескольких ходов фишки стали опять на те же четыре поля. Как они могут при этом переставиться?

ВверхВниз   Решение


Доказать, что равенство  x² + y² + z² = 2xyz  для целых x, y и z возможно только при  x = y = z = 0.

ВверхВниз   Решение


Показать, что  271958 – 108878 + 101528  делится на 26460.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 77886

Тема:   [ Поворот и винтовое движение ]
Сложность: 3
Классы: 10,11

Как расположены плоскости симметрии ограниченного тела, если оно имеет две оси вращения? (Осью вращения тела называется прямая, после поворота вокруг которой на любой угол тело совмещается само с собой.)
Прислать комментарий     Решение


Задача 77880

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Показать, что  271958 – 108878 + 101528  делится на 26460.

Прислать комментарий     Решение

Задача 77882

Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9,10

Доказать, что равенство  x² + y² + z² = 2xyz  для целых x, y и z возможно только при  x = y = z = 0.

Прислать комментарий     Решение

Задача 77890

Тема:   [ Процессы и операции ]
Сложность: 3+
Классы: 8,9

12 полей расположены по кругу: на четырёх соседних полях стоят четыре разноцветных фишки: красная, жёлтая, зелёная и синяя. Одним ходом можно передвинуть любую фишку с поля, на котором она стоит, через четыре поля на пятое (если оно свободно) в любом из двух возможных направлений. После нескольких ходов фишки стали опять на те же четыре поля. Как они могут при этом переставиться?
Прислать комментарий     Решение


Задача 77892

Темы:   [ Взвешивания ]
[ Принцип крайнего (прочее) ]
[ Четность и нечетность ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 8,9

Имеется 13 гирь, каждая из которых весит целое число граммов. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть гирь на каждой, что наступит равновесие. Докажите, что все гири имеют один и тот же вес.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .