ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с пятого знака после запятой (то есть взято приближение α с недостатком с точностью до 0,0001). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 78066

Темы:   [ Десятичные дроби (прочее) ]
[ Приближения чисел ]
Сложность: 4-
Классы: 9,10

В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с третьего знака после запятой (то есть взято приближение α с недостатком с точностью до 0, 01). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

Прислать комментарий     Решение

Задача 78073

Темы:   [ Приближения чисел ]
[ Десятичные дроби (прочее) ]
Сложность: 4-
Классы: 11

В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с пятого знака после запятой (то есть взято приближение α с недостатком с точностью до 0,0001). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

Прислать комментарий     Решение

Задача 78078

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9

100 чисел, среди которых есть положительные и отрицательные, выписаны в ряд. Подчеркнуто, во-первых, каждое положительное число, а во-вторых, каждое число, сумма которого со следующим положительна. Может ли сумма всех подчеркнутых чисел оказаться отрицательной? Равной нулю?
Прислать комментарий     Решение


Задача 78082

Темы:   [ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4-
Классы: 9

64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на двух диагоналях, равна 112. Числа, расположенные симметрично относительно любой диагонали, равны. Докажите, что сумма чисел в любой строке меньше 518.

Прислать комментарий     Решение

Задача 78072

Темы:   [ Геометрические неравенства (прочее) ]
[ Гомотетичные окружности ]
Сложность: 4
Классы: 11

В треугольник вписан квадрат так, что две его вершины лежат на основании, а две другие вершины — на боковых сторонах треугольника. Доказать, что сторона квадрата меньше 2r, но больше $ \sqrt{2}$r, где r — радиус окружности, вписанной в треугольник.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .