Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Вниз   Решение


Прямые OA и OB перпендикулярны. Найти геометрическое место концов M таких ломаных OM длины 1, которые каждая прямая, параллельная OA или OB, пересекает не более чем в одной точке.

ВверхВниз   Решение


Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят.

ВверхВниз   Решение


Дана последовательность  an = 1 + 2n + ... + 5n.  Существуют ли пять идущих подряд её членов, кратных 2005?

ВверхВниз   Решение


Известно, что  ax³ + bx² + cx + d,  где a, b, c, d – данные целые числа, при любом целом x делится на 5. Доказать, что все числа a, b, c, d делятся на 5.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78093  (#1)

Тема:   [ Трапеции (прочее) ]
Сложность: 2+
Классы: 8,9

Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.
Прислать комментарий     Решение


Задача 78094  (#2)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Свойства коэффициентов многочлена ]
[ Делимость чисел. Общие свойства ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9

Известно, что  ax³ + bx² + cx + d,  где a, b, c, d – данные целые числа, при любом целом x делится на 5. Доказать, что все числа a, b, c, d делятся на 5.

Прислать комментарий     Решение

Задача 30310  (#3)

Темы:   [ Четность и нечетность ]
[ Целочисленные решетки ]
Сложность: 3+
Классы: 6,7,8

Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

Прислать комментарий     Решение

Задача 78096  (#4)

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 8,9

В прямоугольной таблице, составленной из положительных чисел, произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении. Доказать, что сумма всех чисел в таблице равна единице.

Прислать комментарий     Решение

Задача 78097  (#5)

Темы:   [ Десятичная система счисления ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

От A до B  999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до A и до B, , ..., .
Сколько среди них таких, на которых имеются только две различные цифры?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .