Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Вниз   Решение


Прямые OA и OB перпендикулярны. Найти геометрическое место концов M таких ломаных OM длины 1, которые каждая прямая, параллельная OA или OB, пересекает не более чем в одной точке.

ВверхВниз   Решение


Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят.

ВверхВниз   Решение


Дана последовательность  an = 1 + 2n + ... + 5n.  Существуют ли пять идущих подряд её членов, кратных 2005?

ВверхВниз   Решение


Известно, что  ax³ + bx² + cx + d,  где a, b, c, d – данные целые числа, при любом целом x делится на 5. Доказать, что все числа a, b, c, d делятся на 5.

ВверхВниз   Решение


Автор: Фольклор

Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.

ВверхВниз   Решение


Бесконечная плоская ломаная A0A1...An..., все углы которой прямые, начинается в точке A0 с координатами x = 0, y = 1 и обходит начало координат O по часовой стрелке. Первое звено ломаной имеет длину 2 и параллельно биссектрисе 4-го координатного угла. Каждое из следующих звеньев пересекает одну из координатных осей и имеет наименьшую возможную при этом целочисленную длину. Расстояние OAn = ln. Сумма длин первых n звеньев ломаной равна sn. Доказать, что найдётся n, для которого $ {\frac{s_n}{l_n}}$ > 1958.

ВверхВниз   Решение


Найти все пары целых чисел  (x, y),  удовлетворяющие уравнению   3·2x + 1 = y².

ВверхВниз   Решение


Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.

ВверхВниз   Решение


К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.

ВверхВниз   Решение


Внутри равностороннего треугольника ABC находится точка O. Прямая OG, соединяющая O с центром тяжести (точкой пересечения медиан) G треугольника, пересекает стороны треугольника (или их продолжения) в точках A', B', C'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ = 3.

ВверхВниз   Решение


Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов?

ВверхВниз   Решение


Известно, что  ax4 + bx³ + cx² + dx + e,  где a, b, c, d, e – данные целые числа, при любом целом x делится на 7.
Доказать, что все числа a, b, c, d, e делятся на 7.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78098  (#1)

Темы:   [ Концентрические окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 9,10

Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым.
Прислать комментарий     Решение


Задача 30310  (#2)

Темы:   [ Четность и нечетность ]
[ Целочисленные решетки ]
Сложность: 3+
Классы: 6,7,8

Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

Прислать комментарий     Решение

Задача 78099  (#3)

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 4
Классы: 9

Из всех параллелограммов данной площади найти тот, у которого наибольшая диагональ минимальна.
Прислать комментарий     Решение


Задача 78100  (#4)

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 4+
Классы: 9

В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении.
Доказать, что сумма всех чисел в таблице равна единице, или все числа равны нулю.

Прислать комментарий     Решение

Задача 78101  (#5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3+
Классы: 8,9,10

Известно, что  ax4 + bx³ + cx² + dx + e,  где a, b, c, d, e – данные целые числа, при любом целом x делится на 7.
Доказать, что все числа a, b, c, d, e делятся на 7.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .