Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.

Вниз   Решение


Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену.

ВверхВниз   Решение


Автор: Логачев Д.

Лист клетчатой бумаги размером N×N раскрасили в N цветов. (Каждую клеточку закрасили одним из этих N цветов или не закрасили вообще). "Правильной" раскраской называется такая, что в каждом столбце и в каждой строке нет двух клеточек одинакового цвета. Можно ли докрасить лист "правильным" способом, если сначала было "правильно" закрашено
а) N2 - 1 клетка?
б) N2 - 2 клетки?
в) N клеток?

ВверхВниз   Решение


Астрономический прожектор освещает октант (трёхгранный угол, у которого все плоские углы прямые). Прожектор помещён в центр куба. Можно ли его повернуть таким образом, чтобы он не освещал ни одной вершины куба?

ВверхВниз   Решение


Решить в натуральных числах уравнение  x2y–1 + (x + 1)2y–1 = (x + 2)2y–1.

ВверхВниз   Решение


Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером m×n клеток?

ВверхВниз   Решение


В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке?

ВверхВниз   Решение


В клетках таблицы размером 10×20 расставлено 200 различных чисел. В каждой строчке отмечены три наибольших числа красным цветом, а в каждом столбце отмечены три наибольших числа синим цветом. Доказать, что не менее девяти чисел отмечены в таблице как красным, так и синим цветом.

ВверхВниз   Решение


Решить в целых положительных числах уравнение

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 78138

Темы:   [ Цепные (непрерывные) дроби ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10

Решить в натуральных числах уравнение

Прислать комментарий     Решение

Задача 78141

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 9,10,11

Доказать, что если  |ax² – bx + c| < 1  при любом x из отрезка  [–1, 1],  то и  |(a + b)x² + c| < 1  на этом отрезке.

Прислать комментарий     Решение

Задача 78143

Темы:   [ Цепные (непрерывные) дроби ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Решить в целых положительных числах уравнение

Прислать комментарий     Решение

Задача 78150

Темы:   [ Теория алгоритмов (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Имеются два набора из чисел 1 и –1, в каждом по 1958 чисел. Доказать, что за некоторое число шагов можно превратить первый набор во второй, если на каждом шагу разрешается одновременно изменить знак у любых 11 чисел первого набора. (Два набора считаются одинаковыми, если у них на одинаковых местах стоят одинаковые числа.)

Прислать комментарий     Решение

Задача 78153

Темы:   [ Геометрия на клетчатой бумаге ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Сторона клетки клетчатой бумаги равна 1. По линиям сетки построен прямоугольник со сторонами m и n. Можно ли в прямоугольнике провести по линиям сетки замкнутую ломаную, которая ровно один раз проходила бы через каждый узел сетки, расположенный внутри или на границе прямоугольника? Если можно, то какова её длина?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .