ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?

Вниз   Решение


Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78186  (#1)

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Имеется два набора чисел  a1 > a2 > ... > an  и  b1 > b2 > ... > bn.  Доказать, что  a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Задача 78187  (#2)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.

Прислать комментарий     Решение

Задача 78188  (#3)

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 4
Классы: 7,8,9

На какое целое число надо умножить 999 999 999, чтобы получить число, состоящее из одних единиц?
Прислать комментарий     Решение


Задача 78189  (#4)

Темы:   [ Десятичная система счисления ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9

Доказать, что в любом шестизначном числе можно переставить цифры так, чтобы сумма первых трёх отличалась от суммы вторых трёх меньше, чем на 10.
Прислать комментарий     Решение


Задача 78190  (#5)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Дано n чисел, x1, x2, ..., xn, при этом  xk = ±1.  Доказать, что если  x1x2 + x2x3 + ... + xnx1 = 0,  то n делится на 4.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .