Страница: 1 [Всего задач: 5]
Задача
78238
(#1)
|
|
Сложность: 3 Классы: 8,9
|
Доказать, что если n чётно, то числа 1, 2, 3, ..., n² можно таким образом расположить в квадратную таблицу n×n, чтобы суммы чисел, стоящих в каждом столбце, были одинаковы.
Задача
78239
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
Имеется трёхзначное число abc, берём cba и вычтем из большего меньшее. Получим число a1b1c1, сделаем с ним то же самое и т.д.
Доказать, что на каком-то шаге мы получим или число 495, или 0. Случай a1 = 0 допускается.
Задача
78240
(#3)
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник
A0B0C0. Пусть точки
A1,
B1,
C1 — центры
квадратов, построенных на сторонах
B0C0,
C0A0,
A0B0. С треугольником
A1B1C1 делаем то же самое. Получаем треугольник
A2B2C2 и т.д.
Доказать, что
An + 1Bn + 1Cn + 1 пересекает
AnBnCn
ровно в 6 точках.
Задача
78241
(#4)
|
|
Сложность: 4 Классы: 8,9
|
Имеется 100 точек на плоскости, причём расстояние между любыми двумя из них
не превосходит 1, и если
A,
B,
C — любые три точки из данных, то треугольник
ABC — тупоугольный. Доказать, что можно провести такую окружность радиуса
1/2, что все данные точки лежат внутри неё или на ней самой.
Задача
78242
(#5)
|
|
Сложность: 4 Классы: 8,9
|
На шахматной доске выбраны две клетки одинакового цвета.
Доказать, что ладья, начиная с первой, может обойти все клетки по разу, а на второй выбранной клетке побывать два раза.
Страница: 1 [Всего задач: 5]