ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан остроугольный треугольник A0B0C0. Пусть точки A1, B1, C1 — центры квадратов, построенных на сторонах B0C0, C0A0, A0B0. С треугольником A1B1C1 делаем то же самое. Получаем треугольник A2B2C2 и т.д. Доказать, что $ \Delta$An + 1Bn + 1Cn + 1 пересекает $ \Delta$AnBnCn ровно в 6 точках.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78238  (#1)

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Доказать, что если n чётно, то числа 1, 2, 3, ..., n² можно таким образом расположить в квадратную таблицу n×n, чтобы суммы чисел, стоящих в каждом столбце, были одинаковы.

Прислать комментарий     Решение

Задача 78239  (#2)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Имеется трёхзначное число abc, берём cba и вычтем из большего меньшее. Получим число  a1b1c1,  сделаем с ним то же самое и т.д.
Доказать, что на каком-то шаге мы получим или число 495, или 0. Случай  a1 = 0  допускается.

Прислать комментарий     Решение

Задача 78240  (#3)

Темы:   [ Индукция в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник A0B0C0. Пусть точки A1, B1, C1 — центры квадратов, построенных на сторонах B0C0, C0A0, A0B0. С треугольником A1B1C1 делаем то же самое. Получаем треугольник A2B2C2 и т.д. Доказать, что $ \Delta$An + 1Bn + 1Cn + 1 пересекает $ \Delta$AnBnCn ровно в 6 точках.
Прислать комментарий     Решение


Задача 78241  (#4)

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 8,9

Имеется 100 точек на плоскости, причём расстояние между любыми двумя из них не превосходит 1, и если A, B, C — любые три точки из данных, то треугольник ABC — тупоугольный. Доказать, что можно провести такую окружность радиуса 1/2, что все данные точки лежат внутри неё или на ней самой.
Прислать комментарий     Решение


Задача 78242  (#5)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9

На шахматной доске выбраны две клетки одинакового цвета.
Доказать, что ладья, начиная с первой, может обойти все клетки по разу, а на второй выбранной клетке побывать два раза.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .