|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Внутри равностороннего (не обязательно правильного) семиугольника A1A2...A7 взята произвольно точка O. Обозначим через H1, H2,..., H7 основания перпендикуляров, опущенных из точки O на стороны A1A2, A2A3,..., A7A1 соответственно. Известно, что точки H1, H2,..., H7 лежат на самих сторонах, а не на их продолжениях. Доказать, что A1H1 + A2H2 + ... + A7H7 = H1A2 + H2A3 + ... + H7A1. a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0. |
Страница: 1 [Всего задач: 3]
Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что ∠ABM = ∠CBN. Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что AC' = A'C.
a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0.
Страница: 1 [Всего задач: 3] |
||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|